
COMMENTS
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M. Usher and J. L. McClelland (2004) recently proposed a new connectionist type of model to explain
context effects on preferential choice including the similarity, attraction, and compromise effects. They
compared their model with an earlier connectionist type model for these same effects proposed by R. Roe,
J. R. Busemeyer, and J. T. Townsend (2001) and raised several new issues. The authors address these
issues and point out the main theoretical differences between the 2 explanations for context effects.

Research on preferential choice has uncovered three paradoxical
findings that have long resisted a coherent explanation: the simi-
larity, attraction, and compromise effects (see Roe, Busemeyer, &
Townsend, 2001, for a review). Referring to Figure 1, the simi-
larity effect refers to the reduced preference for option A relative
to B when option S is introduced; the attraction effect refers to the
enhanced preference for option A relative to B when option D is
introduced; and the compromise effect refers to the enhanced
preference for option C relative to B when option A is introduced.
Recently, several connectionist type models have been put forward
to explain all three of these context effects on choice (Guo &
Holyoak, 2002; Roe et al., 2001; Usher & McClelland, 2004). All
three models build on earlier work by Tversky (1972) to explain
the similarity effect; however, the models differ in terms of their
explanations for the attraction and compromise effects. Two of
these models (Guo & Holyoak, 2002; Roe et al., 2001) rely on the
neural network concept of distant dependent–lateral inhibition to
produce the attraction and compromise effects.1 Using this mech-
anism, these context effects are an emergent property of the
dynamic network interactions. Alternatively, the third model
(Usher & McClelland, 2004) relies on the concept of loss aversion
(Tversky & Simonson, 1993) to explain the attraction and com-
promise effects.2

Usher and McClelland (2004) put forth several arguments for
the loss-aversion explanation as compared with the lateral inhibi-
tory explanation. Their concerns with the latter were mainly tar-
geted at Roe et al.’s (2001) model, and the purpose of this com-
ment is to provide reactions to their arguments. Hereafter we refer

to Roe et al.’s model as DFT (decision field theory) and Usher and
McClelland’s model as the LCA (leaky, competing accumulator)
model.

Does Loss Aversion Pose a Problem for DFT?

As Usher and McClelland (2004) noted, DFT attempts to pro-
vide microlevel mechanisms to explain some of the macrolevel
loss-aversion phenomena (see Busemeyer & Johnson, 2004).
Usher and McClelland questioned whether DFT can explain all of
these complex phenomena, and this remains to be seen. However,
there is no logical inconsistency between DFT and the loss-
aversion concept—one could code the inputs to the DFT system as
positive or negative with respect to some reference point and apply
a loss-aversion type of transformation to these inputs (Barkan &
Busemeyer, 2003). Thus, loss-aversion phenomena are not incon-
sistent with DFT. In fact, the distinction between approach–
avoidance factors has been a central feature of DFT since its
inception (see Busemeyer & Townsend, 1993; Diederich, 2003;
Townsend & Busemeyer, 1989).

Loss-aversion phenomena were used by Usher and McClelland
(2004) to justify their model rather than to rule out DFT. It is an
interesting question to ask, “why does the LCA model need this
assumption?” Like DFT, the LCA model has lateral inhibitory
connections; but unlike DFT, these connections are not distance
dependent. Of course, it would be simple to modify the LCA
model in this manner, but even if this were done, the model still

1 Lateral inhibition refers to feedback occurring between nodes in a
network. In this case, the nodes contain information about the preferences
for the choice options, and information about the preference for one option
feeds back to influence the node representing another option. The lateral
inhibition is distance dependent when the strength of the feedback influ-
ence decreases with dissimilarity between options.

2 Loss aversion refers to the idea that a given change in value has a larger
effect when it is interpreted as a loss as compared with when it is
interpreted as a gain.
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would not produce the contrast enhancement needed to explain the
attraction effect. Why is this true? This is a consequence of the fact
that the LCA model is restricted to positive activations: When a
positive activation passes through a negative inhibitory connec-
tion, it must produce an inhibitory effect, rather than contrast
enhancement. In DFT, the preference states are permitted to as-
sume positive (approach) or negative (avoidance) levels: When a
negative state passes through a lateral inhibitory connection, it
produces a disinhibitory effect, which results in contrast enhance-
ment (referring to Figure 1, option A appears more desirable when
contrasted with option D). As Usher and McClelland pointed out,
many (but not all) neural network models restrict activations to be
positive, and by conforming to this restriction, the LCA model
needs to adopt the loss-aversion hypothesis to explain the attrac-
tion effect.

Does the Restriction of Positive Activations and
Nonlinear Dynamics Pose a Problem for DFT?

Usher and McClelland (2004) pointed out that the states are
restricted to be positive to simulate neural firing rates, and non-
linear dynamics are required to satisfy this restriction (activations
below zero are truncated to zero). DFT allows positive (approach)
or negative (avoidance) preference states, and we use simple linear
dynamics to describe the evolution of these states. We first explain
the use of negative states and then turn to the reason why DFT uses
linear dynamics.

How can one justify negative states? One way is to view
negative states as activation that is suppressed below the baseline
firing rate of a neural unit. It is well known that the basal ganglia–
prefrontal cortex neural system is a complex network involving
both excitatory as well as inhibitory interconnections (see Houk,
Adams, & Barto, 1995). At rest, many neural units are actively
suppressed below baseline firing rate by inhibitory inputs; but if
the inhibiting units are suppressed by other outside activation, then
the previously inhibited neural units are released from inhibition,
which is the neural phenomenon of disinhibition (see Anderson,
1997, chap. 4).3

Now let us turn to the question regarding linear and nonlinear
dynamics. As pointed out by Usher and McClelland (2004), neural
network models usually use nonlinear dynamics for detailed mod-
els of the basal ganglia–prefrontal cortex interactions (see, e.g.,
Brown, Bullock, & Grossberg, 1999). What justifies our use of
linear dynamics? Our goal is to build a mathematical representa-
tion that captures disinhibition in as simple a manner as possible.
This is useful for deriving mathematical solutions to the equations
rather than relying on computer simulation. Linearity is a useful
approximation to nonlinear relations within a short extension (this
is why Newtonian mechanics work within limits). So far we have
been successful using linear dynamics, but we recognize that at
some point we will reach the limits of this approximation, and we
will need to turn to nonlinear dynamics. In summary, a negative
state has a neural interpretation as a below baseline level of
activation, and linear dynamics are retained until the variance
predicted by introducing nonlinearities becomes large enough to
justify a more complex model.

Are the Model Parameters Reasonable?

Usher and McClelland (2004) questioned the reasonableness of our
selection of inhibitory parameters for explaining the similarity and
compromise effects. They noted that the distance between the similar
option and its target is smaller than the distance between the com-
promise option and its targets. Assuming distant dependent lateral
inhibition, they claimed that we should have used a larger strength
lateral inhibitory connection for the similarity application as com-
pared with the compromise application. But they noted that we kept
the parameter constant across applications, and they questioned
whether we could in fact reproduce the correct pattern of results if we
adjusted the parameters appropriately according to each situation.

Why did we keep the parameters constant across applications?
Our purpose was to make it perfectly clear that we could reproduce
all three findings with exactly the same parameters (this was
shown in Figure 14 of Roe et al., 2001). If we are free to adjust the

3 Restricting DFT to positive activation states does not imply that DFT
can no longer account for attraction effects. Consider the following pos-
sible nonlinear version of DFT, restricted to positive activation states (cf.
Grossberg, 1988, Equations 34 and 51):

dPj�t � h� � sii � Pj�t� � Vj � �
i�j

sij � �Pi�t� � b�; (1a)

Pj�t � h� � F �Pj�t� � dPj�t � h��, and F�x� � 0 if x � 0,

F�x� � x if x � 0. (1b)

DFT is an affine approximation, evaluated at the baseline level, of this
nonlinear difference equation. This nonlinear positive activation version of
DFT can still produce the attraction effect. Consider options A, B, and D
shown in Figure 1. Note that option D is the asymmetrically dominated
decoy that is located near option A, and option B is far from both A and D.
If, for example, we set the parameters equal to sii � .05, sAD � sDA � .05,
sAB � sBA � sBD � sDB � 0, VA � .60 � VB, and VD � .50 and the baseline
activation is set to b � 50, then this lateral inhibitory network model
reproduces the attraction effect, but this time using only positive activation
states as well as positive inputs. We would not wish to argue that it has
achieved the status of a highly accurate neural account. This would require an
even more detailed specification (e.g., Grossberg & Gutowski, 1987) that goes
beyond the behavioral phenomena that we are trying to explain here.

Figure 1. A schematic representation of the similarity, attraction, and
compromise effects. Five choice options are represented spatially accord-
ing to their utilities on two dimensions. For example, option A is a
consumer product that is high in quality but low in economy, whereas
option B is a consumer product that is low in quality but high in economy.
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parameters in an appropriate manner for each application, then it
becomes even easier for DFT to produce the desired results. For
example, Tversky’s (1972) experiments on the similarity effect
used simple stimuli (e.g., two outcome gambles) that were care-
fully controlled, whereas Simonson’s (1989) experiments on the
compromise effect used realistic stimuli (e.g., detailed descriptions
of cameras), which were less well controlled. Accordingly, the
lateral inhibitory parameter should be larger for the similarity
application as compared with the compromise application because
of the distance factor. However, the noise parameter should be
smaller for the similarity application as compared with the com-
promise application because of the stimulus complexity factor. For
example, consider the similarity effect represented with options S,
A, and B in Figure 1. If we compute the predictions for this from
DFT (as described in Roe et al., 2001) using a large lateral
inhibition parameter (equal to .04) and a small noise standard
deviation (equal to .1), then we predict a similarity effect equal to
Pr(A|{A, B, S}) – Pr(B|{A, B, S}) � �.16, which is in the correct
direction. Now, consider the compromise effect represented with
options A, B, and C in Figure 1. If we compute the predictions for
this from DFT using a smaller lateral inhibition parameter (equal
to .035) and a larger noise standard deviation (equal to 1.0) for the
compromise application, we predict a compromise effect equal to
Pr(C|{A, B, C}) – Pr(A|{A, B, C}) � .10, which is again in the
correct direction. The size of both of these effects can be changed
by adjusting the model parameters. In summary, we held the
parameters constant across applications simply to show that the
model could reproduce all three context effects using the same
exact parameters. But we can easily recover the correct pattern of
predictions by adjusting the parameters in the appropriate direction
for each application.4

The LCA model is not free of problems when it comes to inter-
preting parameters. A critical parameter that must be included in the
LCA model is the parameter labeled I0, which is required to prevent
the inputs to the network from becoming negative. This parameter is
problematic because it depends on the total loss-aversion contribution
(i.e., loss aversion summed across all the alternatives). If the contri-
butions from loss aversion increase (perhaps because of the magni-
tude of the disadvantages or because new options are added to the
choice set), then this parameter needs to be increased to overcome the
total loss-aversion contribution. Usher and McClelland (2004) set
I0 � .75 for all of their applications, but this selection can only work
for a restricted set of choice problems. Consequently, there is no way
to guarantee that this parameter can remain fixed across a wide variety
of choice sets.

Conclusion

At this point we believe that both DFT and the LCA model
provide competing explanations for similarity, attraction, and com-
promise context effects on preferential choice. As Usher and
McClelland (2004) pointed out, these two theories share a common
mechanism for explaining the similarity effect, but they primarily
differ in terms of their explanation for the attraction and compro-
mise effects. DFT explains these last two effects by a contrast
enhancement mechanism, whereas the LCA model uses the con-
cept of loss aversion. The selection of one theory over another
should be based on new empirical tests of these two fundamentally
different explanations. Usher and McClelland seem to agree with
this position as they have suggested some interesting experimental

tests for distinguishing the two hypotheses. We welcome the
competition and look forward to the answer that nature provides.

4 Recently we fit DFT to a large study of context effects (including
attraction, compromise, and similarity manipulations) conducted by Doug-
las Wedell (2003), and the DFT model accounted for 98% of the data from
80 conditions using 7 parameters.
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